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Problem statement and outline of presentation

Given

Expensive input-output map g : Rn→ R : x→ g(x).

E.g. finite element computations (minutes or hours per computation).

Family {Xλ }λ∈Λ of random variables modelling the uncertainty of variable x.

Aim

Upper/lower probabilities that g(x) ∈ B.

Upper/lower probabilities that g(x)≤ y. (upper/lower cumulative distribution function, p-box)

Upper/lower probabilities that g(x)≤ 0. (upper/lower probability of failure)

Two approaches

Monte-Carlo simulation of the family {g(Xλ )}λ∈Λ.

Monte-Carlo simulation of the random set X generated by {g(Xλ )}λ∈Λ.

Numerical example

The efficiency of the two approaches is demonstrated by means of a moderate scale
engineering structure (simplified model of ARIANE 5 front skirt).

Th. Fetz, M. Oberguggenberger, M. Schwarz Monte Carlo simulation with imprecise random variables IPW2015, Liverpool, UK 2 / 10



Two approaches

1 Family {Xλ }λ∈Λ of random variables

Probability space (Ω,Σ,m).
Family {Xλ }λ∈Λ of random variables

Xλ : Ω→ R : ω → Xλ (ω).

Probability P(Xλ ∈ B) for fixed λ :

P(Xλ ∈ B) =
∫

Ω

1Xλ (ω)∈B dm(ω).

(for initial analysis we drop the map g)

2 Random set X based on {Xλ }λ∈Λ

Set-valued map X : Ω→ R defined by

X(ω) = {Xλ (ω) : λ ∈ Λ}.

(focal set at fixed ω)

X is a random set, with upper/lower
inverses

X−(B) = {ω ∈Ω : X(ω)∩B 6=∅},
X−(B) = {ω ∈Ω : X(ω)⊆ B}.
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X−(B) = {ω ∈Ω : X(ω)∩B 6=∅},
X−(B) = {ω ∈Ω : X(ω)⊆ B}.

Lower/upper probabilities for {Xλ }λ∈Λ

P(B) = inf
λ∈Λ

P(Xλ ∈ B) = inf
λ∈Λ

∫
Ω

1Xλ (ω)∈B dm(ω)

P(B) = sup
λ∈Λ

P(Xλ ∈ B) = sup
λ∈Λ

∫
Ω

1Xλ (ω)∈B dm(ω)

Lower/upper probabilities for X

P˜(B) = m(X−(B)) =
∫

Ω

1X(ω)⊆B dm(ω)

P̃(B) = m(X−(B)) =
∫

Ω

1X(ω)∩B 6=∅ dm(ω)
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Theorem

P˜ ≤ P ≤ P ≤ P̃ X is more conservative than {Xλ }λ∈Λ!
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Simulation of a family {Xλ }λ∈Λ of random variables

1 Basic sample x1, . . . ,xNsamp

Generate a sample x1, . . . ,xNsamp which is distributed as a basic random variable X∗.
Distribution of X∗ should cover a greater range than a distribution of a single Xλ does.

2 Nsamp function evaluations g(xk), k = 1, . . . ,Nsamp

We compute g(xk) either using g directly or a cost saving surrogate model g̃.

3 Approximation of P(g(Xλ )≤ y)

Probability P(g(Xλ )≤ y) for fixed λ is computed by reweighting the original sample.

Weights wk(λ ) depending on parameters λ for reweighting the sample x1, . . . ,xNsamp

according to the distribution of Xλ (cf. importance sampling):

wk(λ ) =
fXλ

(xk)

fX∗(xk)

1
Nsamp

=
fnew(xk)

fold(xk)

1
Nsamp

.

Obtaining P(g(Xλ )≤ y) for different Xλ without additional function evaluations of g:

P(g(Xλ )≤ y) =
∫

Ω

1g(Xλ (ω))≤y dm(ω)≈
Nsamp

∑
k=1

1g(Xλ (ωk))≤y ·wk(λ )=
Nsamp

∑
k=1

1g(xk)≤y ·wk(λ ).
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Simulation of a family {Xλ }λ∈Λ of random variables

4 Approximation of upper/lower cumulative distribution functions F(y) and F(y)

We have to solve the following global optimization problems:

F(y) = P(g≤ y) = sup
λ∈Λ

P(g(Xλ )≤ y)≈max
λ∈Λ

Nsamp

∑
k=1

1g(xk)≤y ·wk(λ ) = max
λ∈Λ

p(λ ),

F(y) = P(g≤ y) = inf
λ∈Λ

P(g(Xλ )≤ y)≈min
λ∈Λ

Nsamp

∑
k=1

1g(xk)≤y ·wk(λ ) = min
λ∈Λ

p(λ ).

Smooth and cheap objective function for fixed y: p(λ ) =
Nsamp

∑
k=1

1g(xk)≤y ·wk(λ ).

Standard optimization algorithms can be applied because of the smoothness of p(λ ).
Effort: Nobj ·Nsamp reweightings, Nsamp expensive function evaluations of g.

Remark: Different samples x1(λ ), . . . ,xNsamp(λ )
for different λ ∈ Λ would lead to a non-smooth
objective function

q(λ ) =
Nsamp

∑
k=1

1g(xk(λ ))≤y ·
1

Nsamp
.
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Simulation of a random set X

1 Propagation of a random set through g

G(ω) = g(X(ω)) = {g(Xλ (ω))) : λ ∈ Λ}
G(ω) = [G(ω),G(ω)] random interval

G(ω) = ming(X(ω)), G(ω) = maxg(X(ω))

2 Cumulative distribution functions

F̃(y) = P̃(g≤ y), F˜(y) = P˜(g≤ y)

F̃(y)=P
(
(−∞,y]∩ [G,G] 6=∅

)
=P
(
G≤ y

)
=FG(y)

F˜(y)=P
(
[G,G]⊂ (−∞,y]

)
=P
(
G≤ y

)
=FG(y)

3 Algorithm for computing F̃(y)

Generate ω1, . . . ,ωNsamp distributed as m.

For each ωk, estimate G(ωk)≈min
i

g(Xλi
(ωk)) using grid points λ1, . . . ,λNgrid on Λ.

F̃(y)≈
Nsamp

∑
k=1

1G(ωk)≤y · 1
Nsamp

.

Effort: Ngrid ·Nsamp expensive evaluations of g.
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Simulation of a random set X

4 Cost saving methods, approximation of g by surrogate models g̃i

Starting point: Collocation points xj, j = 1, . . . ,Ncoll, in Rn and Ncoll evaluations yj = g(xj).

Stochastic surrogate models g̃i of maps Ω→ g◦Xλi
:

Collocation points xj are pulled back to probability space Ω, i.e., for each λi and xj, a
collocation point ωij = X−1

λi
(xj) in Ω is computed.

Clearly, yj = g(Xλi
(ωij)) = g(xj) for every i.

Stochastic surrogate models g̃i, i = 1, . . . ,Ngrid, are obtained by regression through the
data points (ωij,yj), j = 1, . . . ,Ncoll.
Finally, one computes G(ω)≈mini=1,...,Ngrid g̃i(ω).
Based on a sample ω1, . . . ,ωNcoll , a Monte Carlo sample of G is obtained.

Effort: Ncoll expensive evaluations of g;
Ngrid linear regressions (moderate cost);
Nsamp cheap evaluations of g̃i for each i.

Advantage of stochastic surrogate models g̃i on Ω:

Use of orthogonal polynomials with respect to the measure m.
In the Gaussian case, Ω is standard Gaussian space of dimension n×(polynomial order)
and X−1

λi
(xj) is simply (xj−µi)/σi (in each component of xj).
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Numerical example: simplified model of ARIANE 5 front skirt

Limit state function:

g(x) = 1−max{PEEQ(x)/0.07,SP(x)/155}

PEEQ: maximum value of equivalent plastic strain.
SP: maximum principal stress.

Parameters:

35 parameters in total.

We model the uncertainty of the 3 most significant parameters using
families {X(µi,σi)} of Gaussian random variables.

description µi σ2
i

x1 yield stress in cylinder 3 [350, 375]N/mm2 [0.01, 0.02]
x2 pressures loads in sphere 2 [0.38, 0.41]N/mm2 [0.01, 0.02]
x3 temperature loads in cylinder 1 [430, 470]K [0.01, 0.02]

The random variables are independent.

Family {Xλ }λ∈Λ of joint random variables, λ = (µ1,µ2,µ3,σ
2
1 ,σ

2
2 ,σ

2
3 )

Λ = [350, 375]× [0.38, 0.41]× [430, 470]× [0.01, 0.02]× [0.01, 0.02]× [0.01, 0.02].

Th. Fetz, M. Oberguggenberger, M. Schwarz Monte Carlo simulation with imprecise random variables IPW2015, Liverpool, UK 8 / 10



Numerical example: results

Upper probabilities: pf = F(0) = 0.0441, p̃f = F̃(0) = 0.0554.

Lower/upper cumulative distribution functions F˜ ≤ F ≤ F ≤ F̃:
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Nsamp
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Conclusion

Two interpretations of imprecise probability models

(1) Information given by a family {g(Xλ )}λ∈Λ.

(2) Information given by the random set X generated by the family.

Two numerical methods

(1) Reweighting a basic sample.

(2) Fitting stochastic surrogate models to all g(Xλ ).

Optimization

(1) and (2).

Numerical effort

(1) < (2).

Choice of the method

Depends on interpretation of imprecise model.
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