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Problem statement and outline of presentation

Given

@ Expensive input-output map g : R” — R : x — g(x).
E.g. finite element computations (minutes or hours per computation).

@ Family {X; },ca of random variables modelling the uncertainty of variable x.

G

Aim

@ Upper/lower probabilities that g(x) € B.

@ Upper/lower probabilities that g(x) <y. (upper/lower cumulative distribution function, p-box)
<0.

@ Upper/lower probabilities that g(x) (upper/lower probability of failure)

G

Two approaches

@ Monte-Carlo simulation of the family {g(X3)}s1ca-
@ Monte-Carlo simulation of the random set X generated by {g(X3)}1ca-

\

\

Numerical example

@ The efficiency of the two approaches is demonstrated by means of a moderate scale
engineering structure (simplified model of ARIANE 5 front skirt).

.
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Two approaches
1 Family {X, }ca of random variables 2 Random set X based on {X} };ca

@ Probability space (Q,X,m). @ Set-valued map X : Q — R defined by
o Family {X; },ea of random variables

X(w) ={X;(w): A €A}

X, Q—=R: X a
2 Q= Ri0— X (0) (focal set at fixed o)

@ Probability P(X, € B) for fixed A: @ X is a random set, with upper/lower

inverses
P0G €B) = [ Ly, (ayep dm(0).
o X~ (B)= {0 €Q: X(0)NB+£2},

(for initial analysis we drop the map g) X-(B)={weQ:X(w) CB}.
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\ J U J

P<P<PL P X is more conservative than {X3}sen!
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Simulation of a family {X, }, -, of random variables

1 Basic sample xp,...,> XNearmp

@ Generate a sample xi,...,xx,,, Which is distributed as a basic random variable X..
o Distribution of X, should cover a greater range than a distribution of a single X; does.

2 Nsamp function evaluations g(xx), k = 1

@ We compute g(x;) either using g directly or a cost saving surrogate model g.

3 Approximation of P(g(X;) <y)
@ Probability P(g(X;) <) for fixed A is computed by reweighting the original sample.
@ Weights wy (1) depending on parameters A for reweighting the sample x1, ..., XN,
according to the distribution of X, (cf. importance sampling):
() 1 frew(n) 1
Ix. (xk) Nsamp Jold (xk) Nsamp

@ Obtaining P(g(X; ) <y) for different X, without additional function evaluations of g:
Nsamp Nsamp

P(g(Xy) <y) = /Q Lg(x, (w))<y dm(@) = kZ] Lepxy (@x)<y We(A) = Y Lg(x<y - Wi(A).
= k=1

wi (A

Th. Fetz, M. Oberguggenberger, M. Schwarz Monte Carlo simulation with imprecise random variables IPW2015, Liverpool, UK 4/10



Simulation of a family {X, }, -, of random variables

4 Approximation of upper/lower cumulative distribution functions F(y) and F(y)

@ We have to solve the following global optimization problems:

Nsamp
F(y)=P(g< P(g(X;) <y) =~ I wi(A) = A
) =P(g<y) = sup P(g (8(Xp) <y) = glg;\c]; v wi(2) = maxp(2),
Nsamp
F(y)=P(g<vy)= inf P(g(X;) <y) =~ 1 -wr(A A
F(y)=P(g<y) Jnf P(g (8(Xy) <y) = inelgk Loty wi(A) = glnelgl\p( s
Nsamp
@ Smooth and cheap objective function for fixed y:  p( wi(4).

A)= 1;1 Ly(xe)<y

@ Standard optimization algorithms can be applied because of the smoothness of p(1).
@ Effort: Nop; - Nsamp reweightings, Nsamp expensive function evaluations of g.

0.04

@ Remark: Different samples x1 (1), ..., XN, (4)
for different 4 € A would lead to a non-smooth
objective function

—q

— )
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Nsamp

A)= k_):l Le(xi (1))

1
<y
= Nsamp

o
N
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Simulation of a random set X

1 Propagation of a random set through g

° (o) =g(X(w)) = {g(X3(@))) : A € A}

@ 5(w)=[9(w),5(w)] random interval

| © §(0) =ming(X(@)), () =maxg(X(0))

2 Cumulative distribution functions

° F(y)=P(g<y), E(») =P(g<y)

0 F(y)=P((—y]N[S,5] # @) =P(S <) =F5(»)
| @ E0)=P([S,5] € (==n]) =P(§ <y) =F3())

3 Algorithm for computing i?()')

@ Generate @y, ...,y distributed as m.
samp

@ For each wy, estimate §(w;) ~ ming (X, (@;)) using grid points Ay, ..., Ayy,, on A.
- 1
Nsamp

~ N 1
o F(y) ~ kgl ]lﬁ(wk)gy. Nsamp

Effort: Ngyrig - Nsamp €xpensive evaluations of g.
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Simulation of a random set X

4 Cost saving methods, approximation of ¢ by surrogate models g;

Starting point: Collocation points xj, j = 1,...,Neon, in R" and N evaluations y; = g(x;).

Stochastic surrogate models g; of maps Q — go X :

@ Collocation points x; are pulled back to probability space Q, i.e., for each 4; and x;, a
collocation point w; = X;l(xj) in Q is computed.
o Clearly, y; = g(Xj,(wj)) = g(x;) for every i.
@ Stochastic surrogate models g;, i = 1,...,Ngsq, are obtained by regression through the
data points (®;;,y;),j=1,...,Ncoll-
@ Finally, one computes §(w) ~ Mini=1 . Ny gi(w).
@ Based on a sample oy, ..., wy,,, @ Monte Carlo sample of § is obtained.
Effort: N, expensive evaluations of g;
Ngrid linear regressions (moderate cost);
Nsamp cheap evaluations of g; for each i.
Advantage of stochastic surrogate models g; on Q:

@ Use of orthogonal polynomials with respect to the measure m.

@ Inthe Gaussian case, Q is standard Gaussian space of dimension nx (polynomial order)
and X; (x;) is simply (x; — u;)/o; (in each component of x;).
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Numerical example: simplified model of ARIANE 5 front skirt

Limit
sphere 2
° g(x

e SP

cylinder 2

state function:
) =1—max{PEEQ(x)/0.07,SP(x)/155}

: maximum principal stress.

Parameters:
@ 35 parameters in total.

@ PEEQ: maximum value of equivalent plastic strain.

@ We model the uncertainty of the 3 most significant parameters using
families {X(,, 5} of Gaussian random variables.

description i c?
i x1 | vyield stress in cylinder 3 [350,375]N/mm? | [0.01,0.02]
cylinder 1 xp | pressures loads in sphere 2 [0.38,0.41]N/mm? | [0.01,0.02]
x3 | temperature loads in cylinder 1 [430, 470] K [0.01, 0.02]

@ The random variables are independent.

@ Family {X} }ca of joint random variables, A = (uy, i, i3,067,067,67)

A = [350, 375] x [0.38, 0.41] x [430, 470] x [0.01, 0.02] x [0.01, 0.02] x [0.01, 0.02].
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Numerical example: results

Upper probabilities: p; = F(0) = 0.0441, py = F(0) = 0.0554.

sphere 2 Lower/upper cumulative distribution functions F < F < I < F:

p—-boxes

probability

0 0.05 0.1 0.15 0.2
g
Lower bounds S of random intervals G:

cylinder 2

Red dots: @y : G(ay) <0,

cylinder 1 Gray dots: @ : §(ay) > 0.
B —F(0) = # red dots.
Nsamp
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Conclusion

Two interpretations of imprecise probability models

(1) Information given by a family {g(X3)}1eca-
(2) Information given by the random set X generated by the family.

Two numerical methods

-
| \

(1) Reweighting a basic sample.

(2) Fitting stochastic surrogate models to all g(X;).

Optimization

(1) and (2).

Numerical effort
(1) < (2).

Choice of the method
Depends on interpretation of imprecise model.
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